Напишем:


✔ Реферат от 200 руб.
✔ Контрольную от 200 руб.
✔ Курсовую от 500 руб.
✔ Решим задачу от 20 руб.
✔ Дипломную работу от 3000 руб.
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Софизмы и парадоксы

Софизмы (греч. sophisma — измышление, хитрость), которые, как уже говорилось, базируются на разнообразных нарушениях логического закона тождества, представляют собой внешне правильные доказательства ложных мыслей. От софизмов следует отличать паралогизмы (греч. paralogismus — неправильное рассуждение) — логические ошибки, допускаемые непроизвольно, в силу незнания, невнимательности или иных причин. Софизмы строятся на том, что в рассуждении незаметно подменяются понятия, отождествляются разные вещи или же, наоборот, — различаются тождественные объекты.

Будучи интеллектуальными уловками или подвохами, все софизмы разоблачимы, только в некоторых из них логическая ошибка в виде нарушения закона тождества лежит на поверхности и поэтому, как правило, почти сразу заметна. Такие софизмы разоблачить не трудно. Однако встречаются софизмы, в которых подвох спрятан достаточно глубоко, хорошо замаскирован, в силу чего над ними надо изрядно поломать голову. Приведем пример несложного софизма. 3 и 4 — это два разных числа, 3 и 4 — это 7, следовательно, 7 — это два разных числа.

В данном внешне правильном и убедительном рассуждении смешиваются или отождествляются различные, нетождественные вещи: простое перечисление чисел (первая часть рассуждения) и математическая операция сложения (вторая часть рассуждения); между первым и вторым нельзя поставить знак равенства, т.е. налицо нарушение закона тождества. Парадокс в широком смысле слова — это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс — это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают.

Наиболее известный логический парадокс — это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: «Я лжец». Анализ этого элементарного и бесхитростного, на первый взгляд, высказывания приводит к удивительному результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть истинным или ложным.

Рассмотрим последовательно оба случая, в первом из которых высказывание «Я лжец» является истинным, а во втором – ложным. 1)Допустим, что фраза «Я лжец» истинна, т.е. человек, который произнес ее, сказал правду, но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал. 2)Допустим, что фраза «Я лжец» ложна, т.е. человек, который произнес ее, солгал, но в этом случае он не лжец, а правдолюб, следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга). Другой известный логический парадокс, обнаруженный в начале XX в. английским логиком и философом Бертраном Расселом, — это парадокс «деревенского парикмахера».

Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором — не бреет. 1) Допустим, что деревенский парикмахер сам себя бреет, но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет. 2)Допустим, что деревенский парикмахер сам себя не бреет, но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае, он сам себя бреет. Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимно обуславливают друг друга).